Mark Scheme Terminal Velocity Past Paper Questions

Jan 2002 to Jan 2009

5(a) decreases for the first four seconds ✓
zero for the remaining six seconds ✓
(2)

Q5 Jan 2002

(b) $E_k = \frac{1}{2} \times 1.4 \times 10^3 \times 16^2 \checkmark$ = 1.8 × 10⁵ J \checkmark (accept $v = 15 \text{ m s}^{-1}$ from misleading graph and $E_k = 1.6 \times 10^5 \text{ J}$) (2)

(c) (use of
$$P = Fv$$
 gives) $20 \times 10^3 = F \times 30 \checkmark$
 $F = 670 \text{ N} \checkmark$ (2)

- 7(a) ball bearing accelerates at first as resultant force is downwards ✓
 resistive force increases with speed ✓
 when resultant force on ball is zero, terminal velocity reached ✓
 (3)
- (b) show ball bearing takes same time ✓ Q7 Jan 2002
 to travel equal distances ✓
 [or measure velocity at different points ✓ with appropriate method ✓] (2)
 (5)
- 6(a)(i) 70 m s⁻¹ \checkmark

Q6 Jan 2003

(a)(ii)
$$v = 9.81 \times 2.0 \checkmark$$

= 20 m s⁻¹ \checkmark (19.6 m s⁻¹)

(a)(iii)
$$v = \sqrt{(70^2 + 19.62^2)} = 73 \text{ m s}^{-1} \checkmark$$

direction: $\tan \theta = \frac{19.6}{70} = 0.28$
 $\theta = 15.6^\circ \checkmark (\pm 0.1^\circ) \text{ (to horizontal)} \checkmark$
(allow C.E. for values of v from (i) and (ii))
[or use of correct scale drawing] (5)

- (b)(i) air resistance is greater than weight ✓
 (hence) resultant force is upwards ✓
 hence deceleration (Newton's second law) ✓
- (b)(ii) air resistance decreases as speed decreases ✓
 weight equals air resistance (hence constant speed)
 (hence) resultant force is zero (Newton's first law) ✓

 max(4)
 (9)

3 Q3 Jun 2003

(i) weight greater than air resistance

[or (initially only) weight/gravity acting] ✓
hence resultant force downwards or therefore acceleration (2nd law) ✓
air resistance or upward force increases with speed ✓
until air resistance equals weight or resultant force is zero ✓
leaf moves at constant velocity (1st law)
[or 1st law applied correctly] ✓

(ii) air resistance depends on shape
 [or other correct statement about air resistance] ✓
 air resistance less significant ✓
 air resistance less, therefore greater velocity
 [or average velocity greater
 or accelerates for longer] ✓

 $\max(5)$ (5)

Question 3		
(a)	weight/gravity causes raindrop to accelerate/move faster (initially) resistive forces/friction increase(s) with speed resistive force (eventually) equals weight [or upward forces equal downward forces] resultant force is now zero [or forces balance or in equilibrium] no more acceleration [or correct application of Newton's Laws] [if Newton's third law used, then may only score first two marks]	Max 4
(b) (i) (ii)	$E_{k} (= \frac{1}{2} mv^{2}) = \frac{1}{2} \times 7.2 \times 10^{-9} \times 1.8^{2} \checkmark$ $= 1.2 \times 10^{-8} \text{ J} \checkmark (1.17 \times 10^{-8} \text{ J})$ work done $(= mgh) = 7.2 \times 10^{-9} \times 9.81 \times 4.5 \checkmark$ $= 3.2 \times 10^{-7} \text{ J} \checkmark (3.18 \times 10^{-7} \text{ J})$	4
(c)	$v_{\text{resultant}} = \sqrt{(1.8^2 + 1.4^2)} \checkmark$ = 2.2(8) m s ⁻¹ \(\theta = \tan^{-1} (1.4/1.8) = 38^\circ \sqrt{(37.9^\circ})\) [or correct scale diagram]	3